Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Alzheimers Dis ; 98(2): 387-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393906

RESUMO

 Alzheimer's disease (AD) affects more than 40 million people worldwide and is the leading cause of dementia. This disease is a challenge for both patients and caregivers and puts a significant strain on the global healthcare system. To address this issue, the Lancet Commission recommends focusing on reducing modifiable lifestyle risk factors such as hypertension, diabetes, and physical inactivity. Passive pulsatile shear stress (PPSS) interventions, which use devices like whole-body periodic acceleration, periodic acceleration along the Z-axis (pGz), and the Jogging Device, have shown significant systemic and cellular effects in preclinical and clinical models which address these modifiable risks factors. Based on this, we propose that PPSS could be a potential non-pharmacological and non-invasive preventive or therapeutic strategy for AD. We perform a comprehensive review of the biological basis based on all publications of PPSS using these devices and demonstrate their effects on the various aspects of AD. We draw from this comprehensive analysis to support our hypothesis. We then delve into the possible application of PPSS as an innovative intervention. We discuss how PPSS holds promise in ameliorating hypertension and diabetes while mitigating physical inactivity, potentially offering a holistic approach to AD prevention and management.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Hipertensão , Humanos , Doença de Alzheimer/prevenção & controle , Hipertensão/prevenção & controle , Fatores de Risco , Atenção à Saúde
2.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334656

RESUMO

Background: Postoperative cognitive dysfunction (POCD) is a common disorder after general anesthesia in elderly patients, the precise mechanisms of which remain unclear. Methods: We investigated the effect of isoflurane with or without dantrolene pretreatment on intracellular calcium concentration ([Ca2+]i), reactive oxygen species (ROS) production, cellular lactate dehydrogenase (LDH) leak, calpain activity, and cognitive function using the Morris water maze test of young (3 months), middle-aged (12-13 months), and aged (24-25 months) C57BL6/J mice. Results: Aged cortical and hippocampal neurons showed chronically elevated [Ca2+]i compared to young neurons. Furthermore, aged hippocampal neurons exhibited higher ROS production, increased LDH leak, and elevated calpain activity. Exposure to isoflurane exacerbated these markers in aged neurons, contributing to increased cognitive deficits in aged mice. Dantrolene pretreatment reduced [Ca2+]i for all age groups and prevented or significantly mitigated the effects of isoflurane on [Ca2+]i, ROS production, LDH leak, and calpain activity in aged neurons. Dantrolene also normalized or improved age-associated cognitive deficits and mitigated the cognitive deficits caused by isoflurane. Conclusions: These findings suggest that isoflurane-induced cytotoxicity and cognitive decline in aging are linked to disruptions in neuronal intracellular processes, highlighting the reduction of [Ca2+]i as a potential therapeutic intervention.


Assuntos
Anestesia , Anestésicos Inalatórios , Disfunção Cognitiva , Isoflurano , Fármacos Neuroprotetores , Camundongos , Humanos , Animais , Pessoa de Meia-Idade , Idoso , Isoflurano/efeitos adversos , Anestésicos Inalatórios/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Calpaína , Espécies Reativas de Oxigênio/efeitos adversos , Dantroleno/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Camundongos Endogâmicos C57BL , Neurônios
3.
Biomedicines ; 11(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892970

RESUMO

Type 2 diabetes mellitus (T2D) is a significant global public health problem that has seen a substantial increase in the number of affected individuals in recent decades. In a murine model of T2D (db/db), we found several abnormalities, including aberrant intracellular calcium concentration ([Ca2+]i), decreased glucose transport, increased production of reactive oxygen species (ROS), elevated levels of pro-inflammatory interleukins and creatine phosphokinase (CK), and muscle weakness. Previously, we demonstrated that passive pulsatile shear stress, generated by sinusoidal (headward-forward) motion, using a motion platform that provides periodic acceleration of the whole body in the Z plane (pGz), induces the synthesis of nitric oxide (NO) mediated by constitutive nitric oxide synthase (eNOS and nNOS). We investigated the effect of pGz on db/db a rodent model of T2D. The treatment of db/db mice with pGz resulted in several beneficial effects. It reduced [Ca2+]i overload; enhanced muscle glucose transport; and decreased ROS levels, interleukins, and CK. Furthermore, pGz treatment increased the expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and neuronal nitric oxide synthase (nNOS); reduced inducible nitric oxide synthase (iNOS); and improved muscle strength. The cytoprotective effects of pGz appear to be mediated by NO, since pretreatment with L-NAME, a nonspecific NOS inhibitor, abolished the effects of pGz on [Ca2+]i and ROS production. Our findings suggest that a non-pharmacological strategy such as pGz has therapeutic potential as an adjunct treatment to T2D.

5.
J Diabetes Res ; 2023: 4454396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082380

RESUMO

Background: Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathetic and parasympathetic autonomic nervous systems (ANS) and a marker of CAN. Reduced HRV has been shown in T2DM and improved by physical activity and exercise. External addition of pulses to the circulation, as accomplished by a passive simulated jogging device (JD), restores HRV in nondiseased sedentary subjects after a single session. We hypothesized that application of JD for a longer period (7 days) might improve HRV in T2DM participants. Methods: We performed a nonrandomized study on ten T2DM subjects (age range 44-73 yrs) who were recruited and asked to use a physical activity intervention, a passive simulated jogging device (JD) for 7 days. JD moves the feet in a repetitive and alternating manner; the upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate the tapping of feet against the ground during jogging. Heart rate variability (HRV) analysis was performed using an electrocardiogram in each subject in seated posture on day 1 (baseline, BL), after seven days of JD (JD7), and seven days after discontinuation of JD (Post-JD). Time domain variables were computed, viz., standard deviation of all normal RR intervals (SDNN), standard deviation of the delta of all RR intervals (SDΔNN), and the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as the parameters of the Poincaré plots (SD1 and SD2). Results: Seven days of JD significantly increased SDNN, SDΔNN, RMSSD, and both SD1 and SD2 from baseline values. The latter parameters remained increased Post-JD. JD did not modify the frequency domain measures of HRV. Conclusion: A passive simulated jogging device increased the time domain and Poincaré variables of HRV in T2DM. This intervention provided effortless physical activity as a novel method to harness the beneficial effects of passive physical activity for improving HRV in T2DM subjects.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Lactente , Frequência Cardíaca/fisiologia , Diabetes Mellitus Tipo 2/epidemiologia , Corrida Moderada , Sistema Nervoso Autônomo
6.
Biomedicines ; 11(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831159

RESUMO

Duchenne muscular dystrophy (DMD) is an inherited muscular disorder caused by mutations in the dystrophin gene. DMD patients have hypoxemic events due to sleep-disordered breathing. We reported an anomalous regulation of resting intracellular Ca2+ ([Ca2+]i) in vascular smooth muscle cells (VSMCs) from a mouse (mdx) model of DMD. We investigated the effect of hypoxia on [Ca2+]i in isolated and quiescent VSMCs from C57BL/10SnJ (WT) and C57BL/10ScSn-Dmd (mdx) male mice. [Ca2+]i was measured using Ca2+-selective microelectrodes under normoxic conditions (95% air, 5% CO2) and after hypoxia (glucose-free solution aerated with 95% N2-5% CO2 for 30 min). [Ca2+]i in mdx VSMCs was significantly elevated compared to WT under normoxia. Hypoxia-induced [Ca2+]i overload, which was significantly greater in mdx than in WT VSMCs. A low Ca2+ solution caused a reduction in [Ca2+]i and prevented [Ca2+]i overload secondary to hypoxia. Nifedipine (10 µM), a Ca2+ channel blocker, did not modify resting [Ca2+]i in VSMCs but partially prevented the hypoxia-induced elevation of [Ca2+]i in both genotypes. SAR7334 (1 µM), an antagonist of TRPC3 and TRPC6, reduced the basal and [Ca2+]i overload caused by hypoxia. Cell viability, assessed by tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, was significantly reduced in mdx compared to WT VSMCs. Pretreatment with SAR7341 increases cell viability in normoxic mdx (p < 0.001) and during hypoxia in WT and mdx VSMCs. These results provide evidence that the lack of dystrophin makes VSMCs more susceptible to hypoxia-induced [Ca2+]i overload, which appears to be mediated by increased Ca2+ entry through L-type Ca2+ and TRPC channels.

7.
Biomedicines ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551807

RESUMO

The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.

8.
Physiol Rep ; 10(15): e15418, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35924333

RESUMO

Whole Body Periodic Acceleration (WBPA, pGz), is a bed that moves the body headward to forward, adds pulses to the circulation inducing descent of the dicrotic notch (DN) on the pulse waveform with an increase in a/b ratio (a = the height of the pulse waveform and b = the height of the secondary wave). Since the WBPA is large, heavy, and non-portable, we engineered a portable device (Jogging Device, JD). JD simulates passive jogging and introduces pulsations to the circulation. We hypothesized that JD would increase the a/b ratio during and after its use. In Study A, a single-arm placebo-controlled cross-over trial was conducted in24 adults (53.8 ± 14.4 years) using JD or control (CONT) for 30 min. Blood pressure (BPs and BPd) and photoplethysmograph pulse (a/b) were measured at baseline (BL), during 30 min of JD or CONT, and 5 and 60 min after. In Study B (n = 20, 52.2 ± 7 years), a single-arm observational trial of 7 consecutive days of JD on BP and a/b, measured at BL, and after 7 days of JD and 48 and 72 hr after its discontinuation. In Study A, BPs, and BPd decreased during JD by 13% and 16%, respectively, while in CONT both increased by 2% and 2.5%, respectively. The a/b increased by 2-fold and remained greater than 2-fold at all-time points, with no change in a/b during CONT. In Study B, BPs and BPd decreased by 9% and remained below BL, at 72 hr after discontinuation of JD. DN descent also occurred after 7 days of JD with a/b increase of 80% and remained elevated by 60% for at least 72 h. JD improves acute and longer-term vascular hemodynamics with an increase in a/b, consistent with increased effects of nitric oxide (NO). JD may have significant clinical and public health implications.


Assuntos
Artérias , Corrida Moderada , Adulto , Idoso , Pressão Sanguínea , Estudos Cross-Over , Humanos , Pessoa de Meia-Idade , Óxido Nítrico/farmacologia
9.
Front Cell Infect Microbiol ; 12: 890709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903196

RESUMO

Chagas disease is produced by the parasite Trypanosoma cruzi (T. cruzi), which is the leading cause of death and morbidity in Latin America. We have shown that in patients with Chagas cardiomyopathy, there is a chronic elevation of diastolic Ca2+ concentration ([Ca2+]d), associated with deterioration to further address this issue, we explored the role Na+/Ca2+ exchanger (NCX). Experiments were carried out in noninfected C57BL/6 mice and infected with blood-derived trypomastigotes of the T. cruzi Y strain. Anesthetized mice were sacrificed and the cardiomyocytes were enzymatically dissociated. Diastolic [Ca2+] ([Ca2+]d) was measured using Ca2+ selective microelectrodes in cardiomyocytes from control mice (CONT) and cardiomyocytes from T. cruzi infected mice in the early acute phase (EAP) at 20 dpi, in the acute phase (AP) at 40 dpi, and in the chronic phase (CP) at 120 dpi. [Ca2+]d was 1.5-times higher in EAP, 2.6-times in AP, and 3.4-times in CP compared to CONT. Exploring the reverse mode activity of NCX, we replaced extracellular Na+ in equivalent amounts with N-methyl-D-glucamine. Reduction of [Na+]e to 65 mM caused an increase in [Ca2+]d of 1.7 times in cardiomyocytes from CONT mice, 2 times in EAP infected mice, 2.4 times in AP infected mice and 2.8 in CP infected mice. The Na+ free solution caused a further elevation of [Ca2+]d of 2.5 times in cardiomyocytes from CONT, 2.8 times in EAP infected mice, 3.1 times in AP infected mice, and 3.3 times in CP infected mice. Extracellular Ca2+ withdrawal reduced [Ca2+]d in both CONT and cardiomyocytes from Chagas-infected mice and prevented the increase in [Ca2+]d induced by Na+ depletion. Preincubation with 10µM KB-R7943 or in 1µM YM-244769 reduced [Ca2+]d in cardiomyocytes from infected mice, but not control mice. Furthermore, both NCX blockers prevented the increase in [Ca2+]d associated with exposure to a solution without Na+. These results suggest that Ca2+ entry through the reverse NCX mode plays a significant role in the observed [Ca2+]d dyshomeostasis in Chagas infected cardiomyocytes. Additionally, NCX inhibitors may be a viable therapeutic approach for treating patients with Chagas cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica , Trypanosoma cruzi , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio , Trypanosoma cruzi/metabolismo
10.
Front Physiol ; 13: 872624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547584

RESUMO

Skeletal muscle is the primary site of insulin-mediated glucose uptake through the body and, therefore, an essential contributor to glucose homeostasis maintenance. We have recently provided evidence that chronic elevated intracellular Ca2+ concentration at rest [(Ca2+)i] compromises glucose homeostasis in malignant hyperthermia muscle cells. To further investigate how chronic elevated muscle [Ca2+]i modifies insulin-mediated glucose homeostasis, we measured [Ca2+]i and glucose uptake in vivo and in vitro in intact polarized muscle cells from glucose-intolerant RYR1-p.R163C and db/db mice. Glucose-intolerant RYR1-p.R163C and db/db mice have significantly elevated muscle [Ca2+]i and reduced muscle glucose uptake compared to WT muscle cells. Dantrolene treatment (1.5 mg/kg IP injection for 2 weeks) caused a significant reduction in fasting blood glucose levels and muscle [Ca2+]i and increased muscle glucose uptake compared to untreated RYR1-p.R163C and db/db mice. Furthermore, RYR1-p.R163C and db/db mice had abnormal basal insulin levels and response to glucose-stimulated insulin secretion. In vitro experiments conducted on single muscle fibers, dantrolene improved insulin-mediated glucose uptake in RYR1-p.R163C and db/db muscle fibers without affecting WT muscle fibers. In muscle cells with chronic elevated [Ca2+]i, GLUT4 expression was significantly lower, and the subcellular fraction (plasma membrane/cytoplasmic) was abnormal compared to WT. The results of this study suggest that i) Chronic elevated muscle [Ca2+]i decreases insulin-stimulated glucose uptake and consequently causes hyperglycemia; ii) Reduced muscle [Ca2+]i by dantrolene improves muscle glucose uptake and subsequent hyperglycemia; iii) The mechanism by which chronic high levels of [Ca2+]i interfere with insulin action appears to involve the expression of GLUT4 and its subcellular fractionation.

11.
Biomed Res Int ; 2022: 6450844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187168

RESUMO

AIMS: Type 2 diabetes (T2D) is associated with sarcopenia and decreased muscle strength. Explosive and isometric voluntary handgrip strengths (EHGS and HGS) are frequently utilized methods to ascertain health status and a marker of overall muscle strength. We have previously shown that a portable, motorized device, which produces effortless, rapid stepping in place (passive simulated jogging device (JD)), improves glucose homeostasis. This study quantitatively evaluated the effects of JD in modifying parameters of the modified EHGS curve in T2D and nondiabetic (ND) subjects. METHODS: Twenty-one adult participants (11 ND and 10 T2D) (mean age: 41.3 ± 13.5 yr) performed a modified explosive handgrip strength (EHGS) test on study day 1 followed by daily use of JD (90 min per day) for 7 days. The EHGS was repeated after 3 and 7 days' use of JD (JD3 and JD7) and 3 days after completion of JD (Carryover). EHGS curves were analyzed for the following: maximal peak force value (MAX); rate of force development at 25%,75%, and 90% of maximum force; and maximum force (RFD25%, RFD75%, RFD90%, and RFDmax); time to 90%, 75%, and 25% of maximal force (t 90, t 75, t 25) and time to maximal force (t max); and the integrated area under the curve for force vs. time until task failure (iAUCTF); and fatigue resistance times at 50% and 25% of maximal force (FR50 and FR25) and fatigue resistance time to task failure (FRTF). RESULTS: At baseline, T2D had lower MAX compared to ND. There were no differences at baseline for force development time or fatigue resistance time between T2D and ND. In both T2D and ND, 7 days of JD increased FR25 and FRTF and iAUCTF compared to baseline. CONCLUSION: JD for at least 7 days prior to EHGS increased time to task failure (fatigue resistance) and iAUCTF of the force-time curve. JD is a reasonable intervention to decrease sedentary behavior and improve muscle fatigue resistance under various clinical and nonclinical scenarios. This trial is registered with NCT03550105 (08-06-2018).


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Força da Mão/fisiologia , Corrida Moderada , Fadiga Muscular/fisiologia , Adulto , Feminino , Humanos , Masculino
13.
Front Physiol ; 12: 658042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017265

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting and the development of a dilated cardiomyopathy (DCM), which is the leading cause of death in DMD patients. Despite knowing the cause of DMD, there are currently no therapies which can prevent or reverse its inevitable progression. We have used whole body periodic acceleration (WBPA) as a novel tool to enhance intracellular constitutive nitric oxide (NO) production. WBPA adds small pulses to the circulation to increase pulsatile shear stress, thereby upregulating endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) and subsequently elevating the production of NO. Myocardial cells from dystrophin-deficient 15-month old mdx mice have contractile deficiency, which is associated with elevated concentrations of diastolic Ca2+ ([Ca2+]d), Na+ ([Na+]d), and reactive oxygen species (ROS), increased cell injury, and decreased cell viability. Treating 12-month old mdx mice with WBPA for 3 months reduced cardiomyocyte [Ca2+]d and [Na+]d overload, decreased ROS production, and upregulated expression of the protein utrophin resulting in increased cell viability, reduced cardiomyocyte damage, and improved contractile function compared to untreated mdx mice.

14.
Sci Rep ; 11(1): 6437, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742027

RESUMO

Glycemic fluctuations increase oxidative stress, promote endothelial dysfunction and cardiovascular disease. Reducing glycemic fluctuations is beneficial. We previously reported that a portable motorized passive simulated jogging device, (JD) reduces 24 h glycemic indices in type 2 and non-diabetic subjects. This study evaluates effectiveness and feasibility of JD in blunting large glycemic fluctuation induced by an oral glucose tolerance test (OGTT). The study was performed in 10 adult participants mean age 41.3 ± 13.5 year using interstitial glucose monitor (IG). Each participant fasted for 8 h. followed by an OGTT (Pre-JD), thereafter JD was used for 90 min per day for 7 days, without change to diet or activities of daily living. A repeat OGTT (Post-JD) was performed after completion. The integrated area under the curve (iAUC2h-4h) was computed for the OGTT Pre-JD and Post-JD. Seven days of JD blunted the glucose fluctuation produced by OGTT. JD decreased AUC2h by 17 ± 4.7% and iAUC4h by 15 ± 5.9% (p < 0.03). In healthy mostly obese participants 7 days of JD blunts the hyperglycemic response produced by an OGTT. JD may be an adjunct to current glycemic management, it can be applied in different postures for those who cannot (due to physical or cognitive limitations) or will not exercise.Trial registration: ClinicalTrials.gov NCT03550105 (08-06-2018).


Assuntos
Terapia por Exercício/métodos , Hiperglicemia/terapia , Corrida Moderada , Adulto , Glicemia/análise , Feminino , Humanos , Hiperglicemia/sangue , Masculino , Pessoa de Meia-Idade
15.
Front Physiol ; 12: 638491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708143

RESUMO

Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.

16.
Heliyon ; 7(3): e06444, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33748496

RESUMO

Sepsis-induces myocardial contractile dysfunction. We previously showed that whole body periodic acceleration (pGz), the sinusoidal motion of the supine body head-foot ward direction significantly improves survival and decreases microvascular permeability in a lethal model of sepsis. We tested the hypothesis that pGz improves LPS induced cardiomyocyte contractile dysfunction and decreases LPS pro-inflammatory cytokine response when applied pre- or post-treatment. Isolated cardiomyocytes were obtained from mice that received LPS who had been pre-treated with pGz for three days (pGz-LPS) or control. Peak shortening (PS), maximal velocity of shortening (+dL/dt), and relengthening (-dL/dt) as well as diastolic intracellular calcium concentration ([Ca+2]d), sodium ([Na+]d), reactive oxygen species (ROS), and cardiac troponin (cTnT) production were measured. LPS decreased PS, +dL/dt, and -dL/dt, by 37%, 41% and 35% change respectively (p < 0.01), increased [Ca+2]d, [Na+]d, ROS, and cTnT by 343%, 122%, 298%, and 610% change respectively (p < 0.01) compared to control. pGz pre-treatment attenuated the parameters mentioned above. In a separate cohort, the effects of a lethal dose of LPS on protein expression of nitric oxide synthases (iNOS, eNOS, nNOS), pro- and anti-inflammatory cytokines in hearts of mice was studied in pre-treated with pGz for three days prior to LPS (pGz-LPS) and post-treated with pGz 30 min after LPS (LPS-pGz) were determined. LPS increased expression of early and late iNOS and decreased expression of eNOS, phosphorylated eNOS (p-eNOS), and nNOS. Both pre- and post-treatment with pGz markedly reduced early and late pro-inflammatory surge. Therefore, pre- and post-treatment with pGz improves LPS-induced cardiomyocyte dysfunction, decreases iNOS expression, and increases cytoprotective eNOS and nNOS, with decreased pro-inflammatory response. Such results have potential for translation to benefit outcomes in human sepsis.

17.
Emerg Top Life Sci ; 4(4): 379-387, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33200786

RESUMO

There has not been any means to inhibit replication of the SARS-CoV-2 virus responsible for the rapid, deadly spread of the COVID-19 pandemic and an effective, safe, tested across diverse populations vaccine still requires extensive investigation. This review deals with the repurpose of a wellness technology initially fabricated for combating physical inactivity by increasing muscular activity. Its action increases pulsatile shear stress (PSS) to the endothelium such that the bioavailability of nitric oxide (NO) and other mediators are increased throughout the body. In vitro evidence indicates that NO inhibits SARS-CoV-2 virus replication but there are no publications of NO delivery to the virus in vivo. It will be shown that increased PSS has potential in vivo to exert anti-viral properties of NO as well as to benefit endothelial manifestations of COVID-19 thereby serving as a safe and effective backstop.


Assuntos
COVID-19/terapia , Endotélio/metabolismo , Óxido Nítrico/metabolismo , Estimulação Física , Acelerometria , COVID-19/fisiopatologia , Exercício Físico , Humanos , Estimulação Física/métodos , Estresse Mecânico
18.
Sports Med Open ; 6(1): 47, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006749

RESUMO

BACKGROUND: Sedentary time poses a risk to health. Substituting physical activity for inactivity is obvious but this requires a behavior change. Interventions advocated to decrease uninterrupted physical inactivity (defined as Metabolic Equivalent of Task (METS) less than 1.5) are important. One such intervention is accomplished with the Gentle Jogger (GJ), a low risk motorized wellness device which produces effortless, rapid motion of the lower extremities simulating locomotion or fidgeting. GJ produces health benefits in type 2 diabetes, heart disease, and high blood pressure. The purpose of this trial was to ascertain whether GJ increases METS above 1.5 to explain its effectiveness despite sedentary behavior or whether tapping is responsible. METHODS: A randomized single-arm trial was conducted. Subjects were randomized to begin the study in either the supine or seated postures and on the same day crossed over with the starting posture reversed. Oxygen consumption was measured at rest and during GJ. RESULTS: Twenty-six subjects were studied (15 women and 11 men) with a mean age of 44 ± 15 years and BMI 27.9 ± 5.0, 19 were overweight or obese, and 7 had normal BMI. GJ increased oxygen consumption and METS 15% in the seated posture and 13% in the supine posture. No individual receiving GJ achieved METS exceeding 1.5. CONCLUSIONS: In a moderately obese population, GJ in seated or supine posture did not exceed 1.5 METS. The values are comparable to those reported for sit-stand interventions and cannot explain the health benefits of GJ. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03602365 . Registered on July 26, 2018.

19.
Front Aging Neurosci ; 12: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765253

RESUMO

Neuronal intracellular Ca2+ homeostasis is critical to the normal physiological functions of neurons and neuronal Ca2+ dyshomeostasis has been associated with the age-related decline of cognitive functions. Accumulated evidence indicates that the underlying mechanism for this is that abnormal intracellular Ca2+ levels stimulate the dysregulation of intracellular signaling, which subsequently induces neuronal cell death. We examined intracellular Ca2+ homeostasis in cortical (in vivo) and hippocampal (in vitro) neurons from young (3-months), middle-age (12-months), and aged (24-months) wild type C57BL6J mice. We found a progressive age-related elevation of intracellular resting calcium ([Ca2+]r) in cortical (in vivo) and hippocampal (in vitro) neurons associated with increased hippocampal neuronal calpain activity and reduced cell viability. In vitro, removal of extracellular Ca2+ or treatment with SAR7334 or dantrolene reduced [Ca2+]r in all age groups and dantrolene treatment lowered calpain activity and increased cell viability. In vivo, both middle-aged and aged mice showed cognitive deficits compared to young mice, which improved after dantrolene treatment. These findings support the hypothesis that intracellular Ca2+ dyshomeostasis is a major mechanism underlying the cognitive deficits seen in both normal aging and degenerative neurologic diseases.

20.
Front Physiol ; 11: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153426

RESUMO

Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized by a progressive loss of muscle function, decreased ambulation, and ultimately death as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a protein that is important for membrane stability and signaling in excitable cells. Although vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological conditions, little is known about vascular smooth muscle function in DMD. We have previously shown that striated muscle cells, as well as neurons isolated from dystrophic (mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and decreased cell viability in comparison with wild type (Wt). Experiments were carried out in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes. Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of [Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears to be mediated by TRPC channels. Moreover, we have been able to demonstrate pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+] and concomitant cell damage in mdx VSMCs also appears to be mediated through TRPC1, -3 and -6 channel activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA